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What is Audio Generation

Definition, history, and related works
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Audio Generation

* The creation of sound through various ways
* The targets include:

* Sound Effect (Natural, Human-made objects, Animal, etc.)
e Speech (Emotion, Pace, Gender, etc.)

* Music (Genre, Rhythm, Instruments, etc.)

e Other (Imaginary sound, compositional sound)
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History of Sound Effect Creation

Physical M lin
Recreation of the ysical Modeling

realistic ambient
sounds

1 Sound Ideas released the Series 1000 (1979), which
SOU nd EffeCt LI b ra ry was the world's first fully digital sound effect library.

Synthesis by modeling
physical process

Digital collection of

Jack Foley
Generate sound based on | sound effect
Modern foley art shape, material, strength, BEEE sound Effects

and excitations. Sound Ideas
Available for Free Download Fmemshv
Jack Foley (1891-1967) BBC SFX k-
American sound effects artist
Freesound

BBC Sound Effect Library is
a large collection of sound effect

Mass-spring model .Wreesound

Springs

g ¥ )
E"eg'im_’ Next Generation Freesound is a collaborative repository of CC licensed
4 . v, Sound Synthe°i° audio samples, and non-profit organization

Masses

Add live sound effects 1920s. . Modern Foley Artist The mass-string model Project from the University of Edinburgh
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History of Speech Creation —
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Attention is applied

Machenical Synthesis

T S R R
ic Si - DEEEEn TRy
Electronic Signal Processing

Simulating vocal tract,

. Tacotron by Google (Wang et al., 2017)
tongue, and lips

Deep learning-based
Synthesis by modeling > °

Kratzenstein Resonators physica' process

Digital collection of

Kempelen’s Speaking Th N T

e VODER ‘WI

MaCh ine . . so u n d effeCt [ Length Regulator hi(‘m“”g
Concatenation synthesis T e

Formant synthesis FastSpeech

FFT Block

R) Positional
QY Encoding
Phoneme Embedding

Phoneme

Christian Gottlieb Kratzenstein (1723-1795)

Kratzenstein’s resonators that can produce: i 1
S e e Articulatory synthesis NaturalSpeech

FastSpeech by Microsoft (Ren et al., 2019)

........ » Only in training Waveform x
I } CARRIER : MODULATORS } AATIATOR : SPEECH i =¥ MakneSinioenc mwue Decoder
| /7 | | H i I with memol
A I I |
P | I
I UECHANICAL CONNECTIONS 1 : I 4
| 3 I | | )
I : : { : [ Differentiable Durator ] Posterior Encoder
I ! I | i [}

| = :
| m I } : Phoneme Encoder x
; : I | 1 with phoneme pre-trainin,

| Wl

3 | A%
| BuzZ : il Phoneme y
! HIss | il :
I i 2! .
. o . . i 1557 i |amen | sb2ial 7 NaturalSpeech by Microsoft (Tan et al., 2022)
empelen's speaking macnine (replica,
P peaxing (rep ) The Vocal Demonstrator (VODER, 1939)
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History of Music Creation

3 l Ba._
MuseNet by OpenAl

MuseNet by OpenAl (2019)

Synthesizers, MIDI, and DAWs

. Deep learning-based MSP
Create music with

a device created or

adapted to
make musical sound . .
electrical devices . .
» Aurignacian f/ute . Create music with DDSP by Google (Engel et al., 2020)
Aurignacian flute Kempelen’s Speaking Moog Synthesizer machine Iearnlng
43000 and 35000
( - ears 200l Machine Modern DAW Synthesizer (DDSP)
MIDI Symbolic / MIDI (MuseNet)
Waveform (JukeBox)
Big music set ContrOIlabiIity (MIDI'DDSP)
'g 'EKUE '. 8 S e AR e

%m;iﬂ

l \
v

Modern Musical Instruments The Moog Synthesizer by Robert Moog (1970s) Digital Audio Workstation (DAW)
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Can machine do
general audio
generation?

* 'ma
 foley artist,
* musical instruments performer,

oral broadcaster,

sound imaginer,

 Communicate with Al by natural language
* Text-to-Audio Generation

3/6/23



Why: Text-to-Audio Generation

Applications, and motivations

&
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Text-to-Audio Generation Usage Cases

 Computational “foley artist”: (e.g., https://www.thefoleybarn.com )
 Game developer: e.g., A ghost is haunting a house.
* Audio producer: e.q., high heels hitting metal ground.
* Movie producer: e.qg., the laser sound from a laser gun.

e Automatic content creation (> 60 startups?)
Endless music

Audiobook with ambient noises

* White noise for meditation

Sound is often the unsung hero of the movie world
- Hans zimmer

* Data Augmentations

1 s . L )
https://github.com/csteinmetz1/ai-audio-startups #  UNIVERSITY OF
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https://www.thefoleybarn.com/

Text-to-Audio Generation Usage Cases

* Text is a bridge between audio and other modalities

o  Brainbubbles floating in primordial goo 20
by ive - opened 3 S ago

< Discussion

Audio Captioning

Text-to-Audio Generation

e.g. Image, Video, Sketch T M

Thttps://github.com/csteinmetz1/ai-audio-startups UNIVERSITY OF

36/ SURREY
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Generation VS Retrieval

Efficiency
* No need for retrieval
* Endless audio samples

* Fine-grained control on
sound
* Emotion, pitch,
materials, etc.

* Future way of fuzzy
data storage
« 2GB VS 2048 GB

3/6/23

Creativity

e Generate non-exist
sound

e e.g., Half cat Half
sheep sound

* Inspire the content
creation
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Related works

Introduction, and comparison
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Related works

* Label-to-Audio Generation
e Acoustic Scene (Kong et al., 2019), Sound event (Liu et al., 2019), FootStep (Comunit
et al. 2019), ...
* Text-to-Audio Generation
e DiffSound (Yang et al., 2022), AudioGen (Kreuk et al., 2022), Make-an-Audio (Huang
et al., 2023)
* Text-to-Music Generation
* MusicLM (Andrea et al., 2023)
 Modsai (Flavio et al., 2023)
* Noise2Music (Huang et al., 2023)

* Others
e JukeBox (Dhariwal et al., 2020), AudioLM (Borsos et al., 2022), SingSong (Donahue et
al., 2023),...
UNIVERSITY OF g Imperial College
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DiffSound (Yang et al., 2022

Autoregressive

decoder e

£ N
Text ‘J Text ‘ i
input ‘Encodcr F’ Sy e h ’
\ L/ -10000
0 2 4 6 8 10
Non-
> autoregressive ﬁ Q-VAE Spectrogram Codebook \
decoder Z,|23|23|Z4| o0 o
A » Discriminator
N\ ﬁmward [1]5]739>{1M][7[39/>{1 [M[23]M—>M[M[23|M] :
Mel-spectrogram tokens process mel-spectrogram " meaningless s
SRR tokens Corrupt the mel-spectrogram tokens ~  token sequence
|_L '-' ’_,’_’ '- ’_:; ‘, ! using mask (M) and random tokens —>Encoder Q() n
= B —7'-'; 33 s spectrogram P
TgT; Tg [MP3[m]  [1]m]7]39]  [1]5]7[39) \_ E=Eu(s) tokens 4
AR Reverse
process Diffsound f=---- » Diffsound [---- » Diffsound
111 ; ‘
_ BBl MM23M]  [TM[23M]  [1]M]7]39

\ ] ) / \ Use Diffsound learn to recover the mel-spectrogram tokens J

An example of autoregressive
spectrogram tokens generation

An example of non-autoregressive spectrogram tokens generation.

UNIVERSITY OF
3/6/23

' SURREY

2 Imperial College
» London




AudioGen (Kreuk et al., 2022)

e A~

Audio

Decoder
Audio

(10101 0]... 0]  Tokens

Cross-Attention
Causal
Saelf Attention

Transformer Decoder

Embedded text Embedded audio
Text Positional Audio Positional
(10101 01...11 Audio
Text Tokens
Encoder Audio

Encoder

A dog is barking in
the park

< A -
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Make-an-Audio (Huang et al., 2023)

2t U-Netg Zt—1 Zo GQ
Diffusion Denoising -
q(x¢|xt—1) s Boo(xeixe1) Audio
il sy Decoder
.Raln fqlls softly > ® Text o)
in the distance” Encoder Cross-attention Vocoder = ‘ ‘
Generated Audio

~N

-
. - Dynamic Reprogramming ,
Expert Distillation DEY Sample |- B; w
Birds ‘“

2
Base
‘ . [ Audio Captioning ] = E .w Footsteps : . .
> & CLAPS “Rain falls softly in the

Language-Free [ _ _ ] > — | “Rain falls softh distance before hearing
Audio \Audlo-Text Retrieval ] Candidates i in the distance ég sounds of birds and footsteps”
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Related works

LG Ld et éf

T A A

Autoregressive| 1z
S st vews - A s
( ‘ MultiScale
STFT g ||

Text IR Text features y - eI <
input Encoder . _—

¥ s 4*}7 udio

3 4 5 5 0w Decoder AA

‘ Non- Audio
Transformer Decoder [re1ere1... 1l Tokens

L autoregressive — 1 | 5 | 7 [39!
| decoder
-Cross—Attention
} xK

ﬁmwm 1[51739>{1M[7[39}>(1 'M'IzslM)—»MjZ_;M\ P

meaningless
Self-Attention

mel-spectrogram

Mel-spectrogram tokens process

B E-EEE

tokens “Corrupt the mel-spectrogram tokens ~  token sequence
using mask (M) and random tokens
Embedded text Concat Embedded audio
[1m]23]™M] [1T™M][7]39] 1[5][7139] Text Positional Audio Positional

Reverse Audi
process ; ; ; [1Ie1e1el... 0l uaLo
Diffsound Diffsound Diffsound Weres Tokens

Encoder Audio

Encoder

R AR E ‘MEMLB,LMI IIIMLs!Mi l,llMLiwl
e 8F A dog is barking in p
Use Diffsound learn to recover the mel-spectrogram tokens the park W

An example of non-autoregressive spectrogram tokens generation.

An example of autoregressive
spectrogram tokens generation

DiffSound (Yang et al., 2022) AudioGen (Kreuk et al., 2022),

Zt—1 20 G
Denoising -
Audi
Po(elxe-1) De:od:r
R
xN

“Rain falls softly
in the distance”

o )— =
Generated Audio

Make-an-Audio (Huang et al., 2023)

Imperial College
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Comparison with previous studies

* Previous audio generation studies: o oL Worts]__ e
* Requires large-scale audio-text pairs (still not enough).

* Prev: Text 2 Audio =2 Loss = Backprop
e Our: Audio = Audio = Loss 2 Backprop<> Self-supervised Learning

* High computational cost for Audio Generation!
e Prev: 64 or 32 V100 GPUs (AudioGen, DiffSound)

* OQur: 1GPUs
* Limited generation quality and diversity.
* Discrete latent space may limit model performance

UNIVERSITY OF . Imperial College

SURREY &)




Self-supervised Audio Generation

Step 1 Al e @
Human Developer : o | Space
. : y | Laughing | L Giggling
@ p— @ Here are some audio-text pair, 7 o
, try to figure out their relation! lasa) Q
Audio  Text a7y ¥ Guitar® ¢
Ukelele
, N\ /
Step 2 ® Text © Audio
D Human Developer:
. . Nobody knows audio
A A Here are more audio data, better than mell!
M4 Trytofigure out how to generate them =
Audio
(' UNIVERSTYOF [ Imperial College
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How: AudioLDM

Methodology, Advantages, Experiment, and Result
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AudiolLDM

=

3/6/23

g : N
| Laughing | | Giggling
- o

Guitar® ¢

Ukelele |
/ .

R
N

0 Text ' Audi{:;

Contrastive Language-Audio
Learning (CLAP) Encoders

* Align audio and text in one space.

Latent Diffusion Models

* Learn to generate VAE latent
conditioned on CLAP embedding

Mel-spectrogram Autoencoder
* Learn latent representations.

Mel-to-Waveform Vocoder
 Reverse Mel back to waveform

—— Training Sampling

Self-supervised training

Audio data

Contrastive
objective

“A cat meowing E

then screaming as
a young boy Text VAE
talking with no - E d EYe R: Decoder
background noise” il
|
|

Text prompt

Xe RTXF

Generated audio

UNIVERSITY OF 55 Imperial College
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Stepl: Contrastive Language-audio Pretraining

OK Got it

Audio Waveforms Text Data Laughing is similar to Giggle (Text).
st 7> 10sec Sentences Labels Laughing also sounds like Giggle (Audio).
] - e e : e Laughing is similar to Guitar (Text).
S jg S Laughing does sound like Guitar (Audio)
| o] et
3 x 10-sec 10-sec I N eW d ata
Mel-FilterBank Y . —_— Latent
Text Encoder
v \ | Space
Conv2D Conv2D + Attention Feature Fusion l /La u g h | n g G o I o
iggling
®
E! EY EY ... E! e

A 4

Audio Encoder

By
By
By

E(l

n

1

Contrastive Language-Audio Pretraining (Wu et al., 2022)

3/6/23

Audio

Text
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Step?2: Self-supervised Audio Generation Training

4

Audio data

VAE ¥
Encoder

. szxf
'ZER T

Contrastive
objective

'l Human Developer:

A A Here are more audio data,
M1 Tryto figure out how to generate them ="
N— using your knowledge! i 2 ¢ Tell me what you want!

Nobody knows audio
better than me!!!

UNIVERSITY OF
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Advantages of self-supervised training

* Scale up training data easily!
* Collect Audio = Train model!

* Perform data augmentation easily!

* .Previous works:

e Mixup (Kreuk et al., 2022)
o Textl + Text2 - Audiol+Audio2
* Pseudo prompt enhancement (Huang et al., 2023)

Dynamic Reprogramming

Expert Distillatio: Data Sample —M- Birds WO“
C

Audio Ca pt it Footsteps

“Ra'n falls softly in the
CLAPS “Rain falls softly d : :

in the distance” %

Language-Free '

A d e istance before hearin
Audio Ve

andldates

[ >
— <

( )

! Laughing:.. Giggling

.'@

sounds of birds and footsteps”

Make-an-Audio (Huang et al., 2023)

3/6/23
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Ukelele
\
® Text @ Audio

e New audio data

e Augmented audio data
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Overall Advantages

* Less computation cost
e Latent Diffusion Models.

* Less dependency on audio-text
pairs.
* Train LDMs by self supervision

e Continueous latent space
e Zero-shot audio style transfer.
e Zero-shot audio super-resolution
e Zero-shot audio inpainting.

3/6/23

——— Training  ------ Sampling

1
J
. ‘
]
VAE
B Encoder
Contrastive

objective -+ Diffusion
|

Audio data

“A cat meowing
then screaming as

1
a young boy Text An
hgromd s BYeRt Decoder
background noise” ncoder
|
|

Text prompt

Generated audio
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/ero-shot down stream tasks

* Audio style transfers
e Corrupt -> Reverse Diffusion

* Audio inpainting
* Provide temporal hint during
sampling.
* Audio super-resolutions

* Provide frequency hint during
sampling.

3/6/23

Xob € RTXF

VAE VAE
Encoder Decoder
zN~N(0 I Xe RT><F
I

b cxzxﬁ |
z°° e R"7rr Lo—.—. Latent
SR Diffusion
4 Ze RCer?
“Flying insects. Text .
ite” D EYe R
Mosqulto = szx—
Text prompt . ZeR"r'r
- atent | o
P oL 4 Diffusion
ZVGER T E

3 SURREY
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Training Data (16 kHz) {11} AudioSet

e AudioSet

* AudioCaps AudioCaps
P BEYEE sound Effects™

Available for Free Download rwég ﬁé‘

WWfreesound

Finally: 3,302,553 ten-seconds (9000+ hours) audio samples
without text labels.

Largest scale so far

Generating Captions for Audios in the Wild

* FreeSound
* BBC Sound Effect Library

- UNIVERSITY OF
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Evaluation Metrics

* Subjective evaluation * Objective evaluation
* OVL: Overall quality * FD: Frechet Distance
* REL: relevance to text * IS: Inception Score

e KL: Kullback-Leibler Divergence

File name Text description Overall impression (1-100)  Relation to the text description (1-100)
random.name.108029.wav A man talking followed by lights scrapping on a wooden surface 80 90
random_name_108436.wav Bicycle Music Skateboard Vehicle 70 80
random.-name.116883.wav A power tool drilling as rock music plays 90 95

Example questionnaire for human evaluation. The participant will need to fill in the last two columns.

~  UNIVERSITY OF
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Result — SOTA comparison

Model Datasets Text Params | FD| ISt KL| FAD] | OVLt REL*?
Ground truth - - - - - - - 83.61 80.11
DiffSound’ (Yang et al., 2022) AS+AC v 400M 47.68 4.01 2:52 1.15 45.00 43.83
AudioGen' (Kreuk et al., 2022) AS+AC+8 others v 285M - - 2.09 3.13 - .
AudioLDM-S AC X 181M 29.48 6.90 1.97 2.43 63.41 64.83
AudioLDM-L AC X 739M 2012 7.91 1.86 2.08 64.30 64.72
AudioLDM-L-Full AS+AC+2 others X 739M 23.31 8.13 1.59 1.96 65.91 65.97
AudioLDM-L AudioLDM-L-Full AudioLDM-S DiffSound Ground truth
20 | ™=m OVL | = ovL | = oOvL B OVL | | m=m OVL
B REL mam REL mam REL mam REL s REL
10 - 'I II R II.' : Iil - III R
0 - 1 1 1 . -
Q & \90 Q BN \90 Q & \90 Q BN \90 \90

Trained on a single 3090 or A100 GPU!

3/6/23
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Ground truth

| = OVL
s REL

Result — self-supervised LDMSs training

* Training with audio can even 32— [\ sTercraudi
_ . . 3.001 “Audio o : v -Audio
outperform training with audio-text ¢ | — "Q5s : 2 s\ o
. g 2 61 k%
Palrs. 22,501 s //\/ %40 ’
S 2.25 §’5' —— S-Text+Audio § 35 A
 Reason: 3 o0 | = S i—:s;i;g = 304 ,
* Audio representaiton is better than Text T 2 3 2 51 T 52 3 4 51 1 2 3 4 51
i . Training steps Training steps Training steps
1. Text labeling sometimes have weak
relations to audio
* e.g., Boats: Battleships-5.25 conveyor space Model Text Audio FD] ISt KL |
2. Text labeling is error-prone AudioLDM-S v v 3126 6.35 201

« Missing labels in text. AudioLDM-S X v 2948 6.90 1.97

» Text is difficult to include every details.

UNIVERSITY OF
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Result — Super-resolution and Inpainting

o Original Processed
Text description Low resolution High resolution

Ground Truth

e Super-resolution
e VCTK (Speech)
e AudioCaps (General Audio)

Violin

* Inpainting

Sneezing sound

° Audiocaps from a woman.
Task Super-resolution Inpainting
Dataset AudioCaps VCTK  AudioCaps
Unprocessed 2.76 2.15 10.86 Baby Crying
Kuleshov et al. (2017) - 1.32 -
Liu et al. (2022a) - 0.78 -
AudioLDM-S 1.59 1.12 2.33
AudioLDM-L 1.43 0.98 1.92

Super-resolution: Log-spectral distance

. L. . . Female Speech
3/6/23 Inpainting: Frechet audio distance




IN

painting

* Examples

3/6/23

e Use matched text

Unprocessed

Inpainting result

Ground truth

Unprocessed

Inpainting result

Ground truth

Time

Time

3 4.5 6 7.5
Time

A young woman is talking.

Organ, hammond organ.

1.5

Time

Time

Orchestra

Time

3 4.5 6 o]
Time

Air horn, truck horn, speech



Inpainting

* Examples

Time

e Use un-matched text

Time
A man is speaking with bird calls in the background.

Time

Time

aesthimesying: Raining with wind blowing.

UNIVERSITY OF
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Effect of different classifier-free guidance scale

Result — Other details

* A good CFG scale is around 2.5
e Large CFG: Less diversity

* Small CFG: better diversity, less
quality

* Different VAE compression levels.
* 4,8,16

e Evaluation on AudioSet

e Sampling Steps (around 100 DDIM). DDIMsteps 10 25 50 100 200
. . FD 55.84 42.84 35.71 30.17 29.48

e Other ablation studies. IS 421 501 651 685  6.90
KL 2.47 2.12 2.01 1.94 1.97

~  UNIVERSITY OF
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Audio Style Transfer

E-th bies ==—iae § [(SHITEY e Y [T o : 2 —=

Drum beats =2 Ambient Music

1

1

1

|

LU TR
v

i

]

3 - - = . 2
- = e Ry B e T g e 2 e

Sheep vocalization = Narration, monologue

“ UNIVERSITY OF
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Audio Style Transfer

Log-frequency power spectrogram Log-frequency power spectrogram vods
-10 dB -10 dB
-20dB -20 dB
-30dB -30dB
-40 dB -40 dB
-50 dB -50 dB
-60 dB -60 dB
-70 dB -70 dB
-80 dB -80 dB
0 1.5 3 4.5 6 7.5 9
Time
Trumpet Drum beats

—> Children Singing - Ambient Music

Log-frequency power spectrogram

Time

+0 dB

-10 dB

-20dB

-30dB

-40 dB

-50 dB

-60 dB

-70 dB

-80 dB

Sheep vocalization
- Narration, monologue

UNIVERSITY OF
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+ Trending  last 7 days

I\/l O re exa m p | eS Al Models Datasets

Running on A166

, , Pix2PixVideo
e Audio super-resolution
* Audio inpainting Ry
Stable Digusion 2-1

* Fine-grained generation control:

e Controls of object materials e %00

] ] Audioldm Text To'Audio Generation

e Controls of acoustic environment

* Controls of audio pitch S —

° GPT+WolfraMha+Whisper

Controls of temporal orders

UNIVERSITY OF
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More examples

* A stone is hitting a metal plate

* Dance music with strong beats played
by multiple instruments

healthy deep gurgly 10 second burp

* Very windy condition, trying to fly
against the wind in a parachute

A small water steam in a forest with
some bird vocalization

somone slurping noodles long slurp

UNIVERSITY OF g Imperial College

SURREY &




More examples (wired sound)

* The weirdest sound in existence

* The cry of Cthulhu the terrifying
ancestral deity

* A man is speaking backwards
creepily and exhaustively

UNIVERSITY OF

SURREY
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Brain bubbles floating in primordial goo 20

More examples g

= Discussion

@ evalive 3daysago

* Brain bubbles floating in primordial goo ...

 RIFEIRIE TR B AR

]

Sound Effect:

P 0:10/0:10 oe——— )

UNIVERSITY OF
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Image input:

Interesting resources

* Image-to-Audio
* https://huggingface.co/spaces/fffiloni/i

mage-to-sound-fx

SN

=

SRSNNSS

e Al music album:
* https://www.latent.store/albums

Albums. Listen to the
future.

Sound Effect:

» 0:00/0:10 o=

<’ UNIVERSITY OF

8 SURREY
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https://huggingface.co/spaces/fffiloni/image-to-sound-fx
https://huggingface.co/spaces/fffiloni/image-to-sound-fx
https://www.latent.store/albums
https://www.latent.store/albums

AudioLDM on Diffuser

Credit to Sanchit Gandhi from Hugging Face

from diffusers import AudioLDMPipeline
import torch import scipy
repo_id = "sanchit-gandhi/audioldm-text-to-audio"

pipe = AudioLDMPipeline.from_pretrained(repo_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")

prompt = "Techno music with a strong, upbeat tempo and high melodic riffs"

audio = pipe(prompt, num_inference_steps=10, height=512).audios[0]

scipy.io.wavfile.write("'techno.wav", rate=16000, data=audio)

UNIVERSITY OF

3/6/23 3 SURREY
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A few take aways here, thanks!

Paper (https://arxiv.org/abs/2301.12503):
 AudioLDM: Text-to-Audio Generation with Latent Diffusion Models

Project Page: https://audioldm.github.io/

Hugging Face Space: y
* https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation

Github: @LiuHaohe
* Pretrained model: https://github.com/haoheliu/AudioLDM
* Evaluation tools: https://github.com/haoheliu/audioldm eval

Interesting demo website:
e https://www.latent.store/albums
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